
Strategic Management of Technical Debt

Ipek Ozkaya

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA USA

ozkaya@sei.cmu.edu

Philippe Kruchten

Department of Electrical and Computing Engineering

University of British Columbia

Vancouver, Canada

pbk@ece.ubc.ca

Abstract— Technical debt acknowledges that software

development teams sometimes accept compromises in a system

in one dimension (for example, modularity) to meet an urgent

demand in some other dimension (for example, a deadline),

and that such compromises incur a “debt”. If not properly

managed the interest on this debt may continue to accrue,

severely hampering system stability and quality and impacting

the team’s ability to deliver enhancements at a pace that

satisfies business needs. Although unmanaged debt can have

disastrous results, strategically managed debt can help

businesses and organizations take advantage of time-sensitive

opportunities, fulfill market needs and acquire stakeholder

feedback. Because architecture has such leverage within the

overall development life cycle, strategic management of

architectural debt is of primary importance. Some aspects of

technical debt – but not all technical debt – affect product

quality. This tutorial introduces the technical debt metaphor

and the techniques for integrating it fully with the software

development lifecycle intentionally, with a focus on software

architecture.

Keywords-technical debt, design trade-offs, architecture

decision making

I. INTRODUCTION

Large scale projects face the dilemma of balancing rapid
deployment with long-term value. The term technical debt
describes this trade-off between short-term and long-term
value and has already penetrated into practice [1]. The
software development community increasingly relies on
technical debt as a way to understand and communicate
issues of intrinsic quality, value, and cost [2].

As recent as a couple years back the challenge of
understanding what technical debt is and what it refers to
was the dominant question in the research and practitioner
community. This has been replaced recently with testing
practices that concretely communicate technical debt and its
consequences. In the absence of validated tools and
techniques to achieve this goal with repeatable results,
developers resort to ad hoc practices in an effort to
communicate technical debt [3][4]. Researcher resort to
incremental research approaches, mostly repurposing
existing code quality work to capture technical debt [5]. A
recent reflection of these efforts has been the publication of
the beta standard for Technical Debt by OMG [6].

Increasing efforts of software quality analysis tool
vendors to repurpose their capabilities as technical debt
assessment tools contradict with research results that

demonstrate the debt that has the highest cost of ownership is
architectural issues and they cannot always automatically be
measured.

Recent systematic literature reviews on technical debt
have created categories and concept ontologies [7][9][12]
and related debt to different stages in the development life
cycle [8][10][11][13]. Small-scale interview studies on
understanding how developers talk about technical debt have
focused on sources of technical debt [14][15][16]. Broad
practitioner surveys demonstrate architecture to be the most
costly and hardest to manage technical debt issues [17].

The topic is highly relevant to the ICSA audience as
software architecture is at the epicenter of most root causes
of technical debt issues. Software architects, developers and
architecture researchers need to have a crisp understanding
of what constitutes technical debt and what tools to pull out
from their tool boxes when.

II. FORMAT OF THE TUTORIAL

A. Duration.

This is a half-day tutorial on technical debt that has the
goal of introducing the concept as well as techniques that can
be used immediately today. The discussion during the
tutorial includes a balance of open challenges as well as what
can be accomplished by practitioners today.

B. Preliminary outline of the sessions.

 Introduction to Technical Debt (30 minutes)
o Definition of technical debt
o Examples of technical debt

 A Definition Framework (30 minutes)
o Technical debt landscape
o Common misconceptions
o Timeline approach
o State of the practice: examples from

industry

 Practical measures (45 minutes)
o Making technical debt visible
o Exercise: documenting a technical debt

item in the issue tracker

 Analyzing Technical Debt (45 minutes)
o Code quality versus architecture analysis
o Example of a common problem:

overgeneralization
o Example of a common problem: prototype

evolving to product

 Conclusion (30 minutes)
o Key concepts: landscape, techniques,

timeline
o Practices that can be incorporated into

managing projects
o Research challenges

C. Learning outcomes:

This tutorial introduces participants to the practical
aspects of managing technical debt. We expect attendees to
walk away with:

 an understanding of the key concepts-there is a name
for a recurring problem engineers experience and a
conceptual framework to seek understanding about
managing short-term and long-term tradeoffs of cost
and value,

 a template for documenting a technical debt item in
the issue tracker

 lessons learned from fellow practitioners,

 review of analysis techniques to uncover technical
debt

 references to practical techniques that can address
part of the problem today

D. Target audience:

The target audience is software developers, architects,
technical managers as well as researchers interested in
architecture trade-offs and system analysis.

In addition to several onsite offerings to government and
industry organizations variations of this tutorial have been
offered several time in academic venues including but not
limited to:

 International Conference on Software Architecture
2017, Göteborg

 International School of Software Architecture,
Leiden Netherlands, June 2017

 SEI Architecture Technology User Network
Conference, 2011, 2012, 2015, 2016

 CompArch, 2013

 International Conference on Software Engineering,
2012

 Working IEEE/IFIP Conference on Software
Architecture, 2011

 Agile 2011 Conference

 SEI Educators’ Workshop

The audience at these venues included architects,

software developers, technical managers, educators, and
researchers. Participation ranged from one to two dozen
people. There is a one-day course that is offered publically
on the topic at the Software Engineering Institute that some
of the material comes from.

III. PRESENTERS

Ipek Ozkaya is a senior member of the technical staff at
the Carnegie Mellon Software Engineering Institute (SEI).
With her team at the SEI, she works to help organizations
improve their software development efficiency and system

evolution. Her work focuses on software architecture
practices, software economics, and requirements
management. Her latest publications include articles on agile
architecting, dependency management, and architectural
technical debt. Dr. Ozkaya also serves editorial boards of the
IEEE Software magazine and Journal of Information and
Software Technology and as an adjunct faculty member for
the Master of Software Engineering Program at Carnegie
Mellon University (CMU). She has extensive experience in
delivering tutorials and is an invited speaker at software
engineering, agile, and architecture venues (e.g., ICSE,
OOPSLA, SATURN, and WICSA). She holds a doctorate
from CMU in Pittsburgh.

Philippe Kruchten is professor of software engineering in
the department of Electrical and Computer Engineering of
the University of British Columbia. He joined UBC in 2004
after a 30-year career in industry, where he worked mostly in
with large, software-intensive systems design in the domains
of telecommunication, defense, aerospace and transportation.
His current research interests still reside mostly with
software architecture, and in particular architectural
decisions and the decision process, as well as agile software
engineering processes. He is a founding member of IFIP
WG2.10 Software Architecture. Dr. Kruchten received his
mechanical engineering diploma from Ecole Centrale de
Lyon, and his doctorate degree in Information Systems from
Ecole Nationale Supérieure des Télécommunications, Paris.
He is a member of IEEE, and ACM, and a Professional
Engineer in British Columbia and a frequently invited
speaker.

Kruchten and Ozkaya are co-authors of an upcoming

book on Managing Technical Debt, also with Dr. Robert
Nord.

ACKNOWLEDGMENT

Copyright 2018 IEEE. All Rights Reserved.
This material is based upon work funded and supported

by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center.

DM18-0342

REFERENCES

[1] Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C., Shull, F. 2012.

Investigating technical debt folklore: shedding some light on
technical debt opinion. MTD@ICSE 2012: 1-7.

[2] Kruchten, P., Nord, R. L., and Ozkaya, I. 2012. Technical debt: From
metaphor to theory and practice. IEEE Softw. Spec. Issue Tech. Debt
29, 6 (Nov.-Dec. 2012), 18-21.

[3] Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, Mary Popeck: Got
technical debt?: surfacing elusive technical debt in issue trackers.
MSR 2016: 327-338

[4] Qiao Huang, Emad Shihab, Xin Xia, David Lo, Shanping Li:
Identifying self-admitted technical debt in open source projects using
text mining. Empirical Software Engineering 23(1): 418-451 (2018)

http://dblp.uni-trier.de/pers/hd/s/Sp=iacute=nola:Rodrigo_O=
http://dblp.uni-trier.de/pers/hd/z/Zazworka:Nico
http://dblp.uni-trier.de/pers/hd/v/Vetro:Antonio
http://dblp.uni-trier.de/pers/hd/s/Shull:Forrest
http://dblp.uni-trier.de/db/conf/icse/mtd2013.html#SpinolaZVSS12

[5] Radu Marinescu: Assessing technical debt by identifying design flaws
in software systems. IBM Journal of Research and Development
56(5): 9 (2012)

[6] Automated Technical Debt Measure, OMG admtf/2017-03-01, March
22, 2017 http://www.omg.org/spec/ATDM/

[7] Alves, N. S. R., Ribeiro, L. F., Caires, V., Mendes, T. S., and Spínola,
R. O. 2014. Towards an ontology of terms on technical debt. In ACM
SIGSOFT 40, 2 (Mar. 2015), 32-34.
DOI=http://dx.doi.org/10.1145/2735399.2735419.

[8] Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., and
Avgeriou, P. 2015. The financial aspect of managing technical debt:
A systematic literature review. Inform. Software Tech. 64 (Aug.
2015), 52-73.

[9] Izurieta, C., Vetro, A., Zazworka, N., Cai,Y., Seaman, C., and. Shull,
F.. 2012. Organizing the technical debt landscape. In International
Workshop on Managing Technical Debt, pages 23-26, 2012.

[10] Li, Z., Avgeriou, P., and Liang, P. 2015. A systematic mapping study
on technical debt and its management. J. Syst. Softw. 101 (Mar.
2015), 193-220

[11] Tom, E., Aurum, A., and Vidgen, R. T. 2013. An exploration of
technical debt. J. Syst. Softw. 86, 6 (2013), 1498-1516.

[12] Nicolli S. R. Alves, Thiago Souto Mendes, Manoel Gomes de
Mendonça Neto, Rodrigo O. Spínola, Forrest Shull, Carolyn B.
Seaman: Identification and management of technical debt: A
systematic mapping study. Information & Software Technology 70:
100-121 (2016)

[13] Terese Besker, Antonio Martini, Jan Bosch: Managing architectural
technical debt: A unified model and systematic literature review.
Journal of Systems and Software 135: 1-16 (2018)

[14] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., DaSilva,
F., Santos, A., and Siebra, C. 2011. Tracking technical debt: An
exploratory case study. In Proceedings of the 27th International
Conference on Software Maintenance (Williamsburg, VA, Sep. 25-
30, 2011). IEEE Press, Piscataway, NJ, 528-531

[15] Lim, E., Taksande, N., and Seaman. C. 2012. A balancing act: what
software practitioners have to say about technical debt. IEEE
Software, 29, 6 (2012), 22-27.

[16] Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C., Shull, F. 2012.
Investigating technical debt folklore: shedding some light on
technical debt opinion. MTD@ICSE 2012: 1-7.

[17] Ernst, N., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I. 2015.
Measure it? Manage it? Ignore it? Software practitioners and
technical debt. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy, Aug. 30-Sep.
4, 2015). ACM, New York, NY, 50-60.

http://dblp.uni-trier.de/pers/hd/s/Sp=iacute=nola:Rodrigo_O=
http://dblp.uni-trier.de/pers/hd/z/Zazworka:Nico
http://dblp.uni-trier.de/pers/hd/v/Vetro:Antonio
http://dblp.uni-trier.de/pers/hd/s/Shull:Forrest
http://dblp.uni-trier.de/db/conf/icse/mtd2013.html#SpinolaZVSS12

